Медицина будущего: 6 самых перспективных технологических прорывов

Процесс развития медицины с каждым годом ускоряется, и 2017 год полон технологий, открывающих новые перспективы лечения людей. «Футурист» составил подборку наиболее актуальных и значимых из них.

Робототехника и автоматизация постепенно преображают то, как врачи выполняют и хирургические операции, и терапевтическое лечение. Новые системы используют достижения программного обеспечения, миниатюризации и робототехники, позволяя проводить минимально инвазивные операции на самых деликатных частях анатомии человека. С каждым годом роботы выполняют все более сложные задачи с невозможной для людей точностью.

Новая хирургическая система da Vinci X

Успешно внедренные модели роботов-хирургов da Vinci продолжают совершенствовать. Новый представитель линейки предоставит хирургам и больницам доступ к передовым технологиям роботизированной хирургии по более низкой цене. Intuitive Surgical, компания-производитель робота, мировой лидер в области роботизированной минимально-инвазивной хирургии, объявила, что ее новая хирургическая система da Vinci X уже получила сертификат соответствия стандартам (CE Mark) в Европе.

«За последний 21 год Intuitive Surgical стала первопроходцем в области роботизированной хирургии, и мы продолжаем лидировать в разработке и выводе на рынок инновационных технологий, ориентированных на результат», – сказал доктор Гари Гутарт (Gary Guthart), генеральный директор Intuitive Surgical. – «Наши хирурги, больницы и клиенты по всему миру рассказали, что операции с использованием роботизированных технологий имеют огромное значение для их пациентов, подчеркивая важность предоставления выбора с клинической, технологической и стоимостной точек зрения».

Роботизированные системы da Vinci разработаны, чтобы помочь хирургам осуществлять минимально инвазивную хирургию. Однако они не запрограммированы на самостоятельное проведение хирургических операций. Все процедуры выполняются хирургом, который контролирует систему, Da Vinci же обеспечивает 3D-изображение высокой четкости, роботизированную и компьютерную помощь.

Робот-хирург, способный провести операцию на мозг в 50 раз быстрее человека

Хирургия головного мозга требует крайней точности, один промах может повлечь гибель пациента. Даже у представителей одной из самых квалифицированных профессий в мире человеческий фактор может стать причиной смертельной ошибки. Исследователи Университета штата Юта надеются сократить влияние человеческого фактора: они полагают, что их операционный хирург способен выполнять сложные операции на мозге, сократив время, необходимое для разрезания черепа, с двух часов до двух с половиной минут. Таким образом, робот сократит время, необходимое для сложной процедуры, в 50 раз.

Статья по теме

Как классическая медицина помогла гомеопатии стать бизнес-индустрией

Аппарат двигается вокруг уязвимых участков черепа по данным, получаемым при сканировании компьютерной томографией и передаваемым в программное обеспечение робота. Компьютерная томография показывает программисту расположение нервов или вен, которых должен избегать робот.

Помимо очевидных преимуществ механизма машины, она также в долгосрочной перспективе может сэкономить деньги за счет более короткого времени операции. Дополнительным плюсом является уменьшение времени пребывания пациента под наркозом, что также делает процедуру более безопасной.

Терапевтические наноматериалы

Наноматериалы – это устройства, которые настолько малы, что их можно измерить только в молекулярном масштабе. Эти микроскопические машины бывают разных форм и могут быть изготовлены из различных материалов, от золота до синтетических полимеров, в зависимости от их предполагаемых функций. Фактически, более 50 лекарств на основе наночастиц уже одобрены Управлением по контролю за продуктами и лекарствами, такими как Abraxane от рака молочной железы и Doxil от рака яичников. В настоящее время эти аппараты используются для выборочной доставки токсичной химиотерапии непосредственно в раковые опухоли, что способствует снижению доз, необходимых для их уничтожения, и риска серьезных побочных эффектов для пациента. В будущем нанотерапевтические средства могут быть разработаны для уничтожения самих раковых клеток.

Ради этой цели исследователи разработали новую платформу неинвазивного метода визуализации действия наночастиц на рак у мышей (в реальном времени), что поможет исследователям улучшить их до тестирования на людях.

«Это важный шаг вперед в этой области», – заявил главный исследователь Александр Стег (Alexander Stegh). – «В нанотехнологической области отсутствует тщательная оптимизация, которую мы наблюдаем при разработке обычных лекарств, и мы хотели бы изменить это. Система, которую мы здесь разработали, действительно позволяет нам поддерживать эти усилия».

Команда Стега использовала новую платформу для тестирования терапевтических наноматериалов, которые они разрабатывали, – сферических нуклеиновых кислот (SNAs). Они могут убить неизлечимый в настоящее время тип рака мозга, нацеливаясь на определенный ген. Система визуализации помогла установить, что наночастицы оказывают наибольший эффект между 24 и 48 часами после введения, и, следовательно, определить наилучшее время для введения дополнительной химиотерапии.

Искусственный интеллект

Еще одна малозаметная технологическая новинка в медицине включает использование искусственного интеллекта (ИИ). IBM Watson, суперкомпьютер компании IBM, уже продемонстрировала острый диагностический взгляд, а машинное обучение и программы глубокого обучения были использованы для прогнозирования всего, начиная с предположительного момента смерти пациента до следующей крупной вспышки заболевания.

Можно ожидать, что применение ИИ в медицине будет только расти. Особенно в этом году, когда необходимость отбирать и ассимилировать огромное количество медицинских данных – на индивидуальной или крупномасштабной, общественной основе – станет критической. Между тем страх, что потенциально несовершенные программы машинного обучения вытеснят человеческие ресурсы, также станет более реальным.

Редактирование генов

Революционная технология редактирования генов CRISPR/Cas-9 стала уникальным прорывом в области биологии. Она предлагает преобразование ее из медленной, неточной науки в нечто, близкое к физическим наукам. Будущее технологии редактирования генов открыто самым невероятным догадкам, несмотря на легальные запреты во многих странах и этические вопросы, связанные с этим.

Статья по теме

10 медицинских ноу-хау, которых не было бы без Первой мировой

Более широкое использование технологии на людях уже неизбежно. Возможно, именно 2017 год, станет годом, когда это случится в первый раз. Наиболее вероятны широкие испытания редактирования генов в борьбе с раковыми заболеваниями, или использование CRISPR для искоренения патогенных человеческих ДНК-вирусов, таких как ВИЧ или герпес.

Но ожидаются также пассивные меры, такие как простое изучение прогресса болезни Альцгеймера и других нейродегенеративных заболеваний или даже немедицинских сельскохозяйственных и промышленных применений этой технологии. Осознание механизмов действия последовательностей ДНК позволит ученым решать проблемы во всех областях биологии, от лечения болезней человека, до понимания того, почему исчезают некоторые виды живых существ.

Контроль инсулин-продуцирующих клеток на смартфоне

Для людей с диабетом инъекции инсулина являются неотъемлемой частью жизни. Однако новое устройство, созданное китайскими исследователями и проверенное на мышах, может избавить их от необходимости постоянных уколов. Команда имплантировала клетки, продуцирующие инсулин, мышам с диабетом, а затем использовала приложение на смартфоне для «включения» этих клеток. Через два часа устройство, которое его создатели называют HydrogeLED, стабилизировало уровень сахара в крови у мышей. Гидрогелевая капсула размером с монету. Она вживляется под кожу животным и состоит из инсулин-продуцирующих клеток и светодиодных ламп. Клетки вырабатывают инсулин только тогда, когда включены светодиоды.

Уровень сахара в крови можно контролировать с помощью отдельного Bluetooth–глюкометра, который подает сигнал в приложение, когда он поднимается слишком высоко. Затем приложение включает светодиоды, вызывая выработку инсулина. Пользователь может вручную контролировать яркость светодиодов и продолжительность их работы, таким образом регулируя, сколько инсулина попадает в кровь.

Однако пока использование приложения на людях невозможно в связи с некоторыми проблемами. Мыши, на которых проверялась работы устройства, заключены в катушку электромагнитного поля, которая очень похожа на интеллектуальный домашний хаб – таким образом приложение может взаимодействовать с сервером. Светодиоды питаются от самого электромагнитного поля, а значит, вся система не сможет работать вне катушки. Кроме того, на данный момент уровень сахара в крови все еще проверяется с помощью иглы.

В будущих версиях HydrogeLED эти проблемы будут решены. Автор исследования Хайфэн Е планирует запустить 24-часовой мониторинг уровня сахара в крови встроенным глюкометром, который при необходимости сможет автоматически запускать светодиоды.

Комментарии